skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravishankar, Sumedha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the face of a challenging climate STEM (Science, Technology, Engineering and Mathematics) higher education that is resistant to Diversity, Equity, and Inclusion efforts aimed to increase and retain students from historically excluded groups (HEGs), there is a critical need for a support structure to ensure students from HEGs continue to be recruited retained. The Biology Undergraduate and Master's Mentorship Program (BUMMP) embodies this commitment to fostering scientific identity, efficacy, and a sense of belonging for first‐generation and historically underserved undergraduate and master's students at UC San Diego. The mission of BUMMP is to cultivate a sense of belonging, instill confidence, and nurture a strong scientific identity amongst all its participants. At its core, the three pillars of BUMMP are (1) mentorship, (2) professional development, and (3) research. Quality mentorship is provided where students receive personal guidance from faculty, graduate students, postdocs, and industry leaders in navigating their career pathways. Complementing mentorship, BUMMP provides paid research opportunities and prioritizes professional development by offering workshops designed to enhance students' professional skills. These three pillars form the backbone of BUMMP, empowering students from all backgrounds and ensuring their retention and persistence in STEM. So far, we've served over 1350 mentees, collaborated with 809 mentors, and had over 180 mentees actively engaged in BUMMP‐sponsored research activities. The primary focus of this paper is to provide a programmatic guideline for the three pillars of BUMMP: mentorship, professional development, and research. This will offer a blueprint for other institutions to establish similar mentorship programs. Additionally, the paper highlights the impact of the BUMMP program and surveyed mentees who have participated in the mentorship and research component of BUMMP. We showed that mentorship and research experience enhance students' sense of belonging, science identity, and science efficacy, which are key predictors of retention and persistence in pursuing a STEM career. Overall, BUMMP's expansive efforts have made a tremendous impact at UC San Diego and will continue to foster a community of future leaders who will be prepared to make meaningful contributions to the scientific community and beyond. 
    more » « less
  2. null (Ed.)
    Many photosynthetic organisms employ a CO 2 concentrating mechanism (CCM) to increase the rate of CO 2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO 2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO 2 assimilation in diverse organisms. 
    more » « less